To do this, we need a definition. Given categories and functors $ \xymatrix{ &\mathscr{B} \ar[d]^Q \ \mathscr{A} \ar[r]_P & \mathscr{C}, } $ the comma category P⇒Q (often written as (P↓Q) ) is the category defined as follows: Given A , B , C , P and Q as above, there are canonical functors and a canonical natural transformation as shown: $ \xymatrix{ P {\mathbin{\Rightarrow} Q} \ar[r] \ar[d] \ar@{}[dr] |
- {\rotatebox{45 } { ⇒ }} & \mathscr{B} \ar[d]^Q \ \mathscr{A} \ar[r]_P & \mathscr{C} } Inasuitable2−categoricalsense, P {\mathbin{\Rightarrow} Q} isuniversalwiththisproperty.Example:Let \mathscr{A} beacategoryand A \in \mathscr{A} $ . |