CatGloss

Let A\mathscr{A} be a category, I\mathbf{I} a small category, and $D{\colon}\linebreak[0] \mathbf{I} \to \mathscr{A}$ a diagram in A\mathscr{A}. 1. A cone on DD is an object AAA \in \mathscr{A} (the vertex of the cone) together with a family (AfID(I))II\Bigl( A \stackrel{f_I}{\longrightarrow} D(I) \Bigr)_{I \in \mathbf{I}} of maps in A\mathscr{A} such that for all maps IuJI \stackrel{u}{\longrightarrow} J in I\mathbf{I}, the triangle \(\xymatrix@R=1ex{ &D(I) \ar[dd]^{Du} \\ A \ar[ru]^{f_I} \ar[rd]_{f_J} & \\ &D(J) }\) commutes. (Here and later, we abbreviate D(u)D(u) as DuDu.)\n2. A limit of DD is a cone (LpID(I))II\Bigl(L \stackrel{p_I}{\longrightarrow} D(I)\Bigr)_{I \in \mathbf{I}} with the property that for any cone~ on DD, there exists a unique map $\bar{f}{\colon}\linebreak[0] A \to L$ such that pIfˉ=fIp_I \circ \bar{f} = f_I for all III \in \mathbf{I}. The maps pIp_I are called the projections of the limit.