Any map in induces a natural transformation $ \xymatrix@C+1em{ \mathscr{A}^\op \rtwocell<4>^{\h_A}{\h{A’}}{\hspace{.5em}\h_f} &\mathbf{Set} } \mathscr{A}( - , f) f_* f \circ - B \in \mathscr{A} \begin{array}{ccc} \h_A(B) = \mathscr{A}(B, A) &\to & \h_{A’}(B) = \mathscr{A}(B, A’) \ p &\mapsto & f \circ p. \end{array} \mathscr{A} $ be a locally small category. The Yoneda embedding of is the functor $ \h_\bullet{\colon}\linebreak[0] \mathscr{A} \to \ftrcat{\mathscr{A}^\op}{\mathbf{Set}} $ defined on objects by $ \h_\bullet(A) = \h_A $ and on maps by $ \h_\bullet(f) = \h_f $ . Here is a summary of the definitions so far.