CatGloss

A 2-category is comprised of:

  1. objects, for example the categories C\mathsf{C},
  2. 1-morphisms between pairs of objects, for example, the functors CFD\mathsf{C} \xrightarrow{F} \mathsf{D}, and
  3. 2-morphisms between parallel pairs of 1-morphisms, for example, the natural transformations $\xymatrix{ \cC \ar@/^2ex/[r]^{F} \ar@/_2ex/[r]_{G} \ar@{}[r]\mid*{\Downarrow \alpha} & \mathsf{D} }$ so that:
  4. The objects and 1-morphisms form a category, with identities 1C ⁣:CC1_{\mathsf{C}} \colon \mathsf{C} \to \mathsf{C}.
  5. For each fixed pair of objects C\mathsf{C} and D\mathsf{D}, the 1-morphisms F ⁣:CDF \colon \mathsf{C} \to \mathsf{D} and 2-morphisms between such form a category under an operation called vertical composition, as described in Lemma \ref{lem:vert-comp}, with identities $\xymatrix{ \cC \ar@/^2ex/[r]^{F} \ar@/_2ex/[r]_{F} \ar@{}[r]\mid*{\Downarrow 1_F} & \mathsf{D} }$.
  6. There is also a category whose objects are the objects in which a morphism from C\mathsf{C} to D\mathsf{D} is a 2-cell $\xymatrix{ \cC \ar@/^2ex/[r]^{F} \ar@/_2ex/[r]_{G} \ar@{}[r]\mid{\Downarrow \alpha} & \mathsf{D} }underanoperationcalledhorizontalcomposition,withidentities under an operation called horizontal composition, with identities \xymatrix{ \cC \ar@/^2ex/[r]^{1\cC} \ar@/_2ex/[r]{1_\mathsf{C}} \ar@{}[r]\mid{\Downarrow 1{1\mathsf{C}}} & \mathsf{C} }$. The source and target 1-morphisms of a horizontal composition must have the form described in Lemma \ref{lem:horiz-comp}.
  7. The horizontal composite $1H \ast 1_Fofidentitiesforverticalcompositionmustbetheidentity of identities for vertical composition must be the identity 1{HF}$ for for the composite 1-morphisms.
  8. The law of middle four interchange described in Lemma \ref{lem:cat-is-2-cat} holds.