CatGloss

For any group GG, we may define other groups:

  1. the center Z(G)=hGhg=ghgGZ(G) = { h \in G \mid hg = gh\, \forall g \in G}, a subgroup of GG,
  2. the commutator subgroup C(G)C(G), the subgroup of GG generated by elements ghg1h1ghg^{-1}h^{-1} for any g,hGg,h \in G, and
  3. the automorphism group Aut(G)\mathrm{Aut}(G), the group of isomorphisms ϕ ⁣:GG\phi \colon G \to G in cat\textup{\textsf{cat}}. Trivially, all three constructions define a functor from the discrete category of groups (with only identity morphisms) to cat\textup{\textsf{cat}}. Are these constructions functorial in
  4. the isomorphisms of groups? That is, do they extend to functors catisocat\textup{\textsf{cat}}_\text{iso} \to \textup{\textsf{cat}}?
  5. the epimorphisms of groups? That is, do they extend to functors catepicat\textup{\textsf{cat}}_\text{epi} \to \textup{\textsf{cat}}?
  6. all homomorphisms of groups? That is, do they extend to functors catcat\textup{\textsf{cat}} \to \textup{\textsf{cat}}?