CatGloss

The category of categories gives rise to a notion of an isomorphism of categories, defined by interpreting Definition \ref{defn:iso} in cat\textup{\textsf{cat}} or in cat\textup{\textsf{cat}}. Namely, an isomorphism of categories is given by a pair of inverse functors F ⁣:CDF \colon \mathsf{C} \to \mathsf{D} and G ⁣:DCG \colon \mathsf{D} \to \mathsf{C} so that the composites GFGF and FGFG, respectively, equal the identity functors on C\mathsf{C} and on D\mathsf{D}. An isomorphism induces a bijection between the objects of C\mathsf{C} and objects of D\mathsf{D} and likewise for the morphisms.