MathGloss

Let FF be a field. An absolute value on FF is a map :FR\vert \cdot\vert :F\to \mathbb R such that

  1. x0\vert x\vert \geq 0 for all xFx\in F;
  2. x=0\vert x\vert = 0 if and only if x=0x=0;
  3. x+yx+y\vert x+y\vert \leq \vert x\vert + \vert y\vert for all x,yFx,y\in F;
  4. xy=xy\vert x\cdot y\vert = \vert x\vert \cdot \vert y\vert for all x,yFx,y\in F.

Together, 11 and 22 make up the condition that \vert \cdot\vert be positive definite while 33 is just the triangle inequality.

Wikidata ID: Q120812