A binary operation ⋅\cdot⋅ on the set AAA is associative if for all a,b,c∈Aa,b,c \in Aa,b,c∈A, the following relationship holds: a⋅(b⋅c)=(a⋅b)⋅c.a\cdot (b\cdot c) = (a\cdot b)\cdot c.a⋅(b⋅c)=(a⋅b)⋅c. Wikidata ID: Q177251