The compact symplectic group Sp(n)\text{Sp}(n)Sp(n) is the group intersection of the complex symplectic group Sp(2n,C)\text{Sp}(2n,\mathbb C)Sp(2n,C) and the unitary group U(2n)\text{U}(2n)U(2n): Sp(n)=Sp(2n,C)∩U(2n).\text{Sp}(n) = \text{Sp}(2n,\mathbb C)\cap\text{U}(2n).Sp(n)=Sp(2n,C)∩U(2n). It is a matrix Lie group.
Wikidata ID: Q78484790