The compact symplectic group $\text{Sp}(n)$ is the group intersection of the complex symplectic group $\text{Sp}(2n,\mathbb C)$ and the unitary group $\text{U}(2n)$: \(\text{Sp}(n) = \text{Sp}(2n,\mathbb C)\cap\text{U}(2n).\) It is a matrix Lie group.
Wikidata ID: Q78484790