The descending central series of ideals of a Lie algebra $L$ is given by the derived algebras \(\begin{align*}L^0 &= L\\ L^1 &= [L,L]\text{ } (= L^{(1)})\\ L^2 &= [L,L^1]\\ &\text{ }\text{ } \vdots\\ L^i &= [L,L^{i-1}]\\&\text{ }\text{ } \vdots\end{align*}\) Where $L^{(1)}$ is the second element of the derived series of $L$.
Wikidata ID: Q109314515