Let T:V→VT:V\to VT:V→V be a linear transformation from the vector space (V,F)(V,F)(V,F) to itself. Then λ∈F\lambda \in Fλ∈F is an eigenvalue of TTT if there exists v∈Vv\in Vv∈V such that T(v)=λvT(v) = \lambda vT(v)=λv.
Wikidata ID: Q3553768