MathGloss

The n×nn\times n identity matrix InI_n is the n×nn\times n matrix whose entries (aij)(a_{ij}) are such that aij=1a_{ij}=1 when i=ji=j and 00 otherwise. That is, aij=δija_{ij} = \delta_{ij} where δij\delta_{ij} is the Kronecker delta.

Wikidata ID: Q193794