MathGloss

A function f:XYf: X\to Y between metric spaces (X,ρ)(X, \rho) and (Y,σ)(Y,\sigma) is an isometry if for all a,bXa,b \in X, σ(f(a),f(b))=ρ(a,b).\sigma(f(a), f(b)) = \rho(a,b). Two metric spaces are isometric if there exists an isometry between them.

Wikidata ID: Q740207