MathGloss

Let URnU\subset\mathbb R^n be an open subset and let g:URng: U \to\mathbb R^n be differentiable. Then Jacobian determinant of gg is the function Jg:URJg:U\to\mathbb R given by the absolute value of thedeterminant of the Jacobian matrix of gg: Jg(x)=det(Dg(x)).Jg(x)= \vert \text{det}(Dg(x))\vert .

Wikidata ID: Q1474543