Let U⊂RnU\subset\mathbb R^nU⊂Rn be an open subset and let g:U→Rng: U \to\mathbb R^ng:U→Rn be differentiable. Then Jacobian determinant of ggg is the function Jg:U→RJg:U\to\mathbb RJg:U→R given by the absolute value of thedeterminant of the Jacobian matrix of ggg: Jg(x)=∣det(Dg(x))∣.Jg(x)= \vert \text{det}(Dg(x))\vert .Jg(x)=∣det(Dg(x))∣.
Wikidata ID: Q1474543