MathGloss

A measure μ\mu on a measurable space (X,M)(X,\mathcal M) is a function μ:M[0,]\mu:\mathcal M \to [0,\infty] valued on the extended real numbers for which μ()=0\mu(\emptyset) = 0 for any countable, pairwise disjoint collection EiiN{E_i}_{i\in\mathbb N} of measurable sets, μ(iNEi)=iNμ(Ei).\mu\left(\bigcup_{i\in\mathbb N} E_i\right) = \sum_{i\in\mathbb N} \mu(E_i).

A measure space is a measurable space (X,M)(X,\mathcal M) together with a measure μ\mu on M\mathcal M.

Wikidata ID: Q3058212