Let $\mathfrak g$ be a Lie algebra over the field $F$. A $\mathfrak g$-module over a ring is a pair $(V,\cdot)$ of a vector space $V$ over $F$ and $\cdot:\mathfrak g \times V \to V$ a map such that
for all $x,y \in \mathfrak g$, $v,w\in V$, and $\lambda,\mu \in F$.
Wikidata ID: Q18848