MathGloss

Let V1,,Vn,WV_1,\dots,V_n, W be vector spaces. A multilinear map is a map f:V1××VnWf: V_1 \times\cdots\times V_n \to W such that for all 1in1\leq i \leq n and vjVjv_j \in V_j with jij \neq i, the map f(v1,,vi1,,vi+1,,vn):ViWf(v_1,\dots, v_{i-1}, -, v_{i+1}, \dots, v_n):V_i \to W (which varies only in the iith component) given by Vivf(v1,,vi1,v,vi+1,,vn)WV_i \ni v \mapsto f(v_1,\dots, v_{i-1}, v, v_{i+1}, \dots, v_n) \in W is a linear transformation.