Define an equivalence relation ∼\sim∼ on a vector space VVV with subspace WWW by v1∼v2 if v1−v2∈W.v_1 \sim v_2 \text{ if } v_1-v_2 \in W.v1∼v2 if v1−v2∈W. Then the quotient of VVV by WWW is the set of equivalence classes of ∼\sim∼ in VVV.
Wikidata ID: Q1393796