MathGloss

A (unital) ring is a set $R$ together with two binary operations $+$ and $\cdot$ such that

  1. $R$ is an abelian group under $+$;
  2. $R$ is a monoid under $\cdot$;
  3. $\cdot$ distributes over $+$: $a\cdot (b+c)=(a\cdot b) + (a\cdot c)$ and $(b+c)\cdot a = (b\cdot a) + (c\cdot a)$.

Wikidata ID: Q161172