MathGloss

A (unital) ring is a set RR together with two binary operations ++ and \cdot such that

  1. RR is an abelian group under ++;
  2. RR is a monoid under \cdot;
  3. \cdot distributes over ++: a(b+c)=(ab)+(ac)a\cdot (b+c)=(a\cdot b) + (a\cdot c) and (b+c)a=(ba)+(ca)(b+c)\cdot a = (b\cdot a) + (c\cdot a).

Wikidata ID: Q161172