Let VVV be a vector space. The set W⊆VW \subseteq VW⊆V spans VVV if for all v∈Vv \in Vv∈V, there exists n∈Nn \in \mathbb Nn∈N, a collection ${\alpha_i}{i=1}^n \subset \mathbb R,andacollection, and a collection ,andacollection{v_i}{i=1}^n \subset W$ such that \(v = \sum_{i=1}^n \alpha_i v_i.\)
Wikidata ID: Q209812