MathGloss

A function $f:X\to Y$ between metric spaces $(X,\rho)$ and $(Y, \sigma)$ is uniformly continuous if for all $x,y \in X$ and all $\varepsilon > 0$, there exists $\delta > 0$ such that $\sigma(f(x), f(y)) < \varepsilon$ whenever $\rho(x,y) < \delta$.

Wikidata ID: Q741865