MathGloss

Let XX be a normed linear space with dual space $X^.Asequence. A sequence {x_i}_{i\in\mathbb N}in in X$ converges weakly to xXx \in X if limif(xi)=f(x)\lim\limits_{i\to\infty} f(x_i)=f(x) for all $f\in X^$.

Wikidata ID: Q20850777