Let XXX be a normed linear space with dual space $X^.Asequence. A sequence .Asequence{x_i}_{i\in\mathbb N}in in inX$ converges weakly to x∈Xx \in Xx∈X if limi→∞f(xi)=f(x)\lim\limits_{i\to\infty} f(x_i)=f(x)i→∞limf(xi)=f(x) for all $f\in X^$.
Wikidata ID: Q20850777