MathGloss

Let $(X,\Sigma,\mu)$ be a measure space and let ${f_n}_{n\in\mathbb N}$ be a sequence of functions $f_n: X\to \mathbb R$. The sequence converges in measure to $f$ if for all $\varepsilon > 0$, the measure of the set $\mu({x\in X\mid \vert f_n(x) -f(x)\vert >\varepsilon})$ converges to zero as $n$ goes to infinity.

Wikidata ID: Q768656