The Euclidean inner product is an inner product on Rn\mathbb R^nRn given by ⟨x,y⟩=∑i=1nxiyi.\langle x,y\rangle = \sum_{i=1}^n x_iy_i.⟨x,y⟩=i=1∑nxiyi. The notation ⟨x,y⟩\langle x,y\rangle⟨x,y⟩ notation is often written x⋅yx\cdot yx⋅y instead.
Wikidata ID: Q181365