MathGloss

Let (V,F)(V,F) be a vector space. A function ,:V×VF\langle\cdot,\cdot\rangle: V\times V \to F is an inner product on VV if

  1. it is bilinear;
  2. it is commutative;
  3. v,v0\langle v, v\rangle \geq 0 for all vVv \in V and v,v=0\langle v,v\rangle = 0 if and only if v=0v=0.

Wikidata ID: Q23924662