MathGloss

A Hermitian inner product ,\langle\cdot,\cdot\rangle on a complex vector space VV is a bilinear form on VV that is antilinear in the second slot. That is,

  1. u+v,w=u,w+v,w\langle u+v,w\rangle = \langle u,w\rangle +\langle v,w\rangle;
  2. u,v+w=u,v+u,w\langle u,v+w\rangle = \langle u,v\rangle +\langle u,w\rangle;
  3. αu,v=αu,v\langle \alpha u ,v\rangle = \alpha\langle u,v\rangle ;
  4. u,αv=αu,v\langle u ,\alpha v\rangle = \overline\alpha\langle u,v\rangle ;
  5. u,v=v,u\langle u,v\rangle = \overline{\langle v,u\rangle}
  6. u,u0\langle u,u \rangle \geq 0
  7. u,u=0\langle u,u \rangle = 0 if and only if u=0u=0.

Wikidata ID: Q77583424