A Hermitian inner product ⟨⋅,⋅⟩ on a complex vector space V is a bilinear form on V that is antilinear in the second slot. That is,
- ⟨u+v,w⟩=⟨u,w⟩+⟨v,w⟩;
- ⟨u,v+w⟩=⟨u,v⟩+⟨u,w⟩;
- ⟨αu,v⟩=α⟨u,v⟩ ;
- ⟨u,αv⟩=α⟨u,v⟩ ;
- ⟨u,v⟩=⟨v,u⟩
- ⟨u,u⟩≥0
- ⟨u,u⟩=0 if and only if u=0.
Wikidata ID: Q77583424