MathGloss

Let VV be a module over the ring RR. A subset WVW \subset V is linearly independent if for viWv_i \in W and αiR\alpha_i \in R, i=1nαivi=0\sum_{i=1}^n \alpha_i v_i=0 only when αi=0\alpha_i = 0 for all ii.

Wikidata ID: Q27670