Let VVV be a module over the ring RRR. A subset W⊂VW \subset VW⊂V is linearly independent if for vi∈Wv_i \in Wvi∈W and αi∈R\alpha_i \in Rαi∈R, ∑i=1nαivi=0\sum_{i=1}^n \alpha_i v_i=0i=1∑nαivi=0 only when αi=0\alpha_i = 0αi=0 for all iii.
Wikidata ID: Q27670