MathGloss

Let RR be a commutative ring and xx a variable. Then R[x]R[x] is the polynomial ring of polynomials in xx with coefficients in RR.

We can also define the polynomial ring in multiple variables. Let X=x1,,xnX = {x_1,\dots,x_n} be a finite collection of variables. Then R[X]=R[x1,,xn]R[X] = R[x_1,\dots,x_n] is defined as follows:

To each function I:XNI:X\to \mathbb N, associate a monomial xI=x1I(x1)++xnI(xn).x^I = x_1^{I(x_1)}+\cdots + x_n^{I(x_n)}. Then R[X]={I:XNaIXIaIR,aI=0 for all but finitely many I}.R[X]= \left\{ \sum_{I:X\to \mathbb N} a_IX^I \mid a_I\in R, a_I = 0 \text{ for all but finitely many } I \right\}. Multiplication and addition are defined exactly how you would think.

Wikidata ID: Q1455652