MathGloss

Let RR be a ring, let MM be an RR-module, and let NNN\subseteq N be a submodule of MM. Then the quotient module M/NM/N is the set of cosets m+NmM{m+N\mid m\in M} with addition defined by (m1+N)+(m2+N)=(m1+m2)+N(m_1+N)+ (m_2+N) = (m_1+m_2) + N and scalar multiplication by r(m1+N)=(rm1)+Nr(m_1 + N) = (rm_1)+N.

Wikidata ID: Q1432554