Let R be a ring, let M be an R-module, and let N⊆N be a submodule of M. Then the quotient module M/N is the set of cosets m+N∣m∈M with addition defined by (m1+N)+(m2+N)=(m1+m2)+N and scalar multiplication by r(m1+N)=(rm1)+N.
Wikidata ID: Q1432554