Let $R$ be a ring and let $M$ be an $R$-module. A composition series for $M$ is a chain of submodules of $M$ \(M = F_0 \supset F_1 \supset \cdots \supset F_{n-1}\supset F_n =\{0\}\) such that the quotient $F_i/F_{i+1}$ is simple for all $i$.
Wikidata ID: Q2525646